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Abstract. Micronekton are mid-trophic marine organisms characterized by a size range of 2 to 20 cm, gathering 14 

a wide diversity of taxa (crustaceans, fish, molluscs, etc.). They are responsible for an important active carbon 15 

export to the deep ocean because of their diel vertical migrations and constitute the main prey for pelagic predators. 16 

A new method to define provinces that identify micronekton functioning patterns based on environmental variables 17 

is proposed in Albernhe et al. (2024, under review). Following this methodology, we define homogeneous 18 

provinces using environmental variables computed from Copernicus Marine Service products. These provinces 19 

represent a relevant way to define regions of interest, offering a regional scope of study for micronekton indicators 20 

and their evolution in time. In this study, we observe the evolution of the provinces in time from 1998 to 2023, to 21 

account for the seasonal to interannual variability. We focus on the variations in surface area and average latitude 22 

of each province. We observe a global shrinking of productive provinces and polar provinces, in favor of equatorial 23 

and tropical provinces expansion. Additionally, tracking the geographical changes of the provinces over time 24 

shows that most are shifting toward the poles. 25 
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1 Introduction  41 

The intermediate level of the oceanic food web is constituted by a group of marine organisms called micronekton, 42 

understudied yet, but garnering increasing attention. This key component of marine ecosystems characterized by 43 

organisms in a size range from 2 to 20 cm contains a wide diversity of taxa such as crustaceans, fish, molluscs and 44 

gelatinous (Brodeur et al., 2004; Escobar-Flores et al., 2019). Micronekton mostly feed on zooplankton and are 45 

the main prey of marine large predators, some of which are of crucial economic importance (e.g. tunas, Bell et al., 46 

2015; Terawasi et al., 2017; McCluney et al., 2019). In addition to their role of prey for commercially harvested 47 

top predators (Young et al., 2015), micronekton themselves become a valuable resource for fisheries, as the trophic 48 

level of exploited species is decreasing (St. John et al., 2016; Gatto et al., 2023). Another aspect of micronekton 49 

worthy of interest lies in its migratory behaviour, which impact global carbon export (Pinti et al. 2021; Buesseler 50 

et al., 2022) by actively transporting and sequestrating carbon beneath the mixed layer (Bianchi et al., 2013; Boyd 51 

et al., 2019; Gorgues et al., 2019). 52 

Therefore, estimating micronekton biomass is a major concern for fisheries management and climate regulation. 53 

Observations of micronekton primarily rely on trawl sampling, which is susceptible to biases due for example to 54 

species avoidance (Kaartvedt et al., 2012) or on ship-borne acoustic measurements, which does not provide yet a 55 

reliable representation of the micronekton biomass (McGehee et al., 1998; Kloser et al., 2002). Numerical models 56 

as the Spatial Ecosystem and Population Dynamics Model – Low and Mid Trophic Levels (SEAPODYM-LMTL: 57 

Lehodey et al., 2010; 2015; Conchon, 2016) are complementary tools for simulating micronekton biomass, 58 

offering the advantage of providing continuous global-scale time series. 59 

One approach to quantify and characterize the mid-trophic level populations is the definition of homogeneous 60 

provinces.  Longhurst was the pioneer and defined a static vision of biogeographical provinces based on 61 

chlorophyll fields (Longhurst 1995; 2007).  Multiple combinations of environmental forcings have been used to 62 

create accurate definitions of provinces for each field: catch per unit of effort of commercial fisheries (Reygondeau 63 

et al., 2012), multi-expertise discussions (Sutton et al., 2017), distribution of species (Costello et al., 2017), 64 

phytoplankton species assemblages (Elizondo et al., 2021). Acoustic-based regionalization is also explored, using 65 

environmental drivers classification to model backscattering characteristics (Proud et al., 2017), or recently 66 

partitioning acoustic data according to the vertical structure of sound-scattering mid-trophic biomass (Ariza et al., 67 

2022).   68 

Complementing these approaches, Albernhe et al. (2024, under review) proposed a new methodology for 69 

regionalizing the global ocean into biophysical provinces based on environmental variables. The ambition of this 70 

work was to identify micronekton homogeneous functioning patterns using a parsimonious set of biophysical 71 

variables that are known to have an impact on micronekton biomass (epipelagic layer temperature, stratification 72 

of the mesopelagic ocean, and net primary production (NPP)). Clustering these variables results in a global 73 

classification of six distinct biomes (tropical, subtropical, eastern boundary coastal upwelling systems, oceanic 74 

mesotrophic systems, sub-polar and polar biomes). The authors also defined a monthly time series of biomes for 75 

the 1998-2019 time period.  From these large biomes, provinces are derived as biomes’ sub-divisions at the scale 76 

of ocean basin and hemisphere. A characterization of these provinces with simulated micronekton from 77 

SEAPODYM-LMTL model outputs identifies biomes-specific relations between micronekton biomasses and the 78 

environmental variables used in the clustering. Additionally, biomes-specific vertical structures are indicated by 79 

ratios of modelled micronekton functional groups (i.e., groups of micronekton with specific migratory behaviour, 80 

and specific depth habitat). Boundaries between provinces have also been validated using acoustic data. With 81 

demonstrated accuracy in homogeneous micronekton characteristics, these provinces enable the gathering and 82 

extrapolation of the few available observation data of micronekton over large homogeneous areas. This could 83 

benefit the exploration of the micronekton spatio-temporal variability within global or regional datasets. 84 

Provinces’ features, such as surface area and positional changes, serve as valuable indicators offering insights into 85 

the evolution of ecosystem structure over time on both global and regional scales. Following Albernhe et al. (2024, 86 

under review)’s methodology, we define in the present study an annual time series of biophysical provinces from 87 

1998 to 2023. We observe the evolution of two geographical indicators: the surface area and the average latitude 88 

of each province. 89 

  90 

 91 
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2 Material and methods 93 

2.1 Environmental variables and biophysical clustering 94 

We define a time series of biophysical provinces from 1998 to 2023 following Albernhe et al. (2024, under 95 

review)’s approach. The latter publication offers a methodology for global ocean regionalization based on 96 

environmental variables, with no gaps and no overlaps, displaying homogeneous biophysical characteristics.  97 

We consider three environmental variables, that are known to have an impact on micronekton: the mean 98 

temperature in the epipelagic layer, the temperature gradient between the epi and the meso-pelagic layers, as an 99 

index of the stratification, and the integrated NPP. The pelagic layers mentioned are defined as in SEAPODYM-100 

LMTL. These variables are computed from the biological and physical Copernicus Marine Service datasets of the 101 

product Global Ocean low and mid trophic levels biomass content hindcast, 102 

GLOBAL_MULTIYEAR_BGC_001_033 (1/12° horizontal resolution, product ref01, table 1). In the product, the 103 

weekly 3D temperature fields come from the GLORYS12V1 simulation. NPP and the associated euphotic depth 104 

are computed using the Vertically Generalized Production Model (VGPM) of Behrenfeld and Falkowski (1997) 105 

which is based on the Satellite Observations reprocessed Global Ocean Chlorophyll product. The spatial domain 106 

of our study is restricted to area where the depth of the water column supports the existence of all three pelagic 107 

layers as defined in SEAPODYM-LMTL (i.e. roughly 1000m deep, See Material and Method section of Albernhe 108 

et al. (2024, under review)). Consequently, shallow coastal areas are excluded from this analysis. 109 

As described in Albernhe et al. (2024, under review), a Principal Component Analysis (PCA) (Hotelling, 1933) is 110 

performed on the three environmental variables mentioned above (i.e., epipelagic layer temperature, stratification 111 

and NPP). Then, a clustering is performed on the PCA two principal components, hereafter referred to as 112 

“biophysical clustering”. This biophysical clustering is performed using the unsupervised k-means machine 113 

learning algorithm (Lloyd, 1957; Pedregosa et al., 2011), which partitions the observations into k=6 homogeneous 114 

clusters (See Material and Method section of Albernhe et al. (2024, under review)). These clusters define 115 

homogeneous biomes on a global scale, hereafter referred to as “biophysical biomes”. 116 

First, the training phase of k-means algorithm is applied to time-averaged 1/12-degree datasets from 1998 to 2023. 117 

This process defines static reference biophysical biomes, representing the average state of the ocean over the entire 118 

period. After the training phase, the clustering model parameters are estimated, and we can use this model to make 119 

predictions on other data. Then, the prediction phase of k-means algorithm is applied on monthly data over the 120 

same time period (1998-2023) (See Material and Method section of Albernhe et al. (2024, under review)). This 121 

results in a monthly time series of biophysical biomes that captures seasonal and interannual variability. 122 

The biophysical biomes obtained from the clustering of environmental data characterize homogeneous 123 

environmental regimes on a global scale. In this study, we also delineate ”provinces” as sub-divisions of biomes 124 

at the scale of ocean basins and hemispheres that have been shown to be characterized by stable biophysical drivers 125 

and potential taxonomic identity (Spalding et al., 2012; Sutton et al., 2017; Albernhe et al., 2024, under review). 126 

This subdivision enables the use of 27 provinces to define regional scopes for the study of micronekton. 127 

 128 

2.2 Trends identification 129 

The aim of this study is to observe the evolution of the provinces in time from 1998 to 2023. To study the 130 

interannual variability and identify potential trends over the 26 years, we consider the annual time series (i.e., 131 

annually averaged monthly time series). We document the evolution of two geographical indicators: the surface 132 

area and the average latitude, for each province. The average latitude diagnostic has been designed to assess a 133 

potential poleward displacement of certain provinces (see Hastings et al., 2020; Pinsky et al. 2020 and references 134 

therein). 135 

To evaluate the evolution of surface area over time, we analyze the slope (in km²/year) of a linear regression model 136 

based on the annual surface area (in km²) of each province from 1998 to 2023. The coefficient of determination 137 

(R 2) associated with every linear regression (i.e., computed for each province) is a statistical measure assessing 138 

the degree of alignment between the observed values and the linear regression model. From the linear regression, 139 

the percentage of variation of the provinces’ surface between 1998 and 2023 is computed (in %), based on the 140 

difference between the first and last point of the regression (respectively matching 1998 and 2023).  141 

To track the poleward drift of provinces over time, we analyze the slope (in degrees poleward/year) of a linear 142 

regression model based on the average latitude of each province throughout the annual time series from 1998 to 143 
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2023. The coefficients of determination (R 2) associated with every linear regression are computed. The ‘degree 144 

poleward’ unit that we use for this diagnostic is associated with degree N for provinces in the northern hemisphere, 145 

and degree S for provinces in the southern hemisphere. Thus, provinces belonging to the equatorial Biome 1 146 

(provinces 101, 102 and 103) are not considered in this diagnostic because of their equatorial position. Derived 147 

from the linear regressions, we estimate the poleward variation trend over the 26 years for each province (in degree 148 

poleward), based on the difference between the first and last point of the regression (respectively matching 1998 149 

and 2023). 150 

  151 

3 Results 152 

3.1 Biophysical provinces definition 153 

To define the homogeneous biophysical biomes, we perform a clustering on the two principal components 154 

generated by the PCA performed on the three environmental variables (i.e. epipelagic layer temperature, 155 

stratification and NPP). From the learning phase of the clustering algorithm, six static reference biophysical biomes 156 

(Figure 1) are defined on a global scale, representing the average state of the ocean over the entire period. The sub-157 

division of these biomes according to ocean basin and hemisphere leads to the definition of 27 biophysical 158 

provinces (identified by different shades of the biomes’ colors in Figure 1).  159 

 160 

161 
Figure 1: Map of reference biophysical biomes obtained by PCA principal component clustering from averaged 162 
epipelagic layer temperature, stratification, and NPP over the 1998-2023 time period. Geographical separation between 163 
different areas of the same biome defines 27 associated provinces. Provinces are identified by different shades of biomes’ 164 
colors, defined in the legend. One label is attributed to each province with the hundreds’ digits corresponding to the 165 
biome in which they belong. Grey areas delimitate the domain where the depth of the water column is not sufficient to 166 
ensure the existence of the three pelagic layers of SEAPODYM-LMTL (product ref 01, Table 1). 167 

The six reference biophysical biomes are characterized as: tropical, subtropical, eastern boundary coastal 168 

upwelling systems, oceanic mesotrophic systems, sub-polar and polar (respectively numbered from 1 to 6). They 169 

are characterized by specific environmental regimes detailed in Albernhe et al. (2024, under review).  170 

The monthly time series of these provinces is available as an animation showing the provinces’ geographical 171 

evolution in time from 1998 to 2023 (https://doi.org/10.5446/68853). Together with the variations of ocean 172 

environmental conditions, the geographical extent of provinces evolves in time. Seasonal variability can be 173 

observed with the latitudinal shifts of the horizontal boundaries, as well as regional seasonal phenomena or isolated 174 

phenomena like ENSO events. 175 

 176 
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3.2 Provinces’ surface area evolution 177 

We aim to observe the geographical evolution of the provinces in time from 1998 to 2023. The slopes of the linear 178 

regression models computed from the annual time series of surface area for each province are computed (See 179 

supplementary material, Table S1, third column). These trends (in km2/year) are also expressed as the equivalent 180 

percentage of evolution between 1998 and 2023, in % (Table S1, fourth column). The latter is displayed in Figure 181 

2, as a map of the reference biophysical provinces showing their surface evolution in time from 1998 to 2023.  182 

183 
Figure 2: Map of the provinces’ surface area evolution in time from 1998 to 2023. Black lines delineate the definition of 184 
the 27 reference biophysical provinces (cf. Figure 1). Colors represent the trend in surface variation for each province 185 
(in % from 1998 to 2023): shades of red indicate increasing surface area, while shades of blue indicate decreasing surface 186 
area. 187 

From 1998 to 2023, there has been a decline in the surface area of productive provinces (i.e., characterized by high 188 

NPP) in eastern boundary coastal upwelling systems and oceanic mesotrophic systems (provinces belonging to 189 

Biomes 3 and 4, i.e. labelled 300’s and 400’s), as indicated by the provinces colored with shades of blue in Figure 190 

2. Most of the polar and subpolar provinces such as the North Atlantic and North Pacific subpolar areas 191 

(respectively provinces 501 and 502) and the circumpolar province of the Southern Ocean (601) also display 192 

decreasing trends in their extent. On the other hand, provinces with increasing surface trends are mostly tropical 193 

or subtropical areas (Indian Ocean, South Atlantic tropical band, or South Pacific tropical band, respectively 194 

provinces 103, 201 and 203).  195 

On a global scale, productive provinces and polar provinces seem to shrink in favor of tropical provinces 196 

expansion. However, some biomes exhibit significant discrepancies among the provinces they encompass. For 197 

instance, the surface of the Southern Ocean province 503 (belonging to the subpolar Biome 5) shows an increasing 198 

trend, in opposition with provinces 501 and 502 belonging to the same biome, showing decreasing trends in the 199 

northern hemisphere. 200 

 201 

3.3 Provinces’ average latitude evolution 202 

Together with the evolution of provinces’ surface area, provinces’ average latitude is a valuable metric to track the 203 

geographical evolution of the provinces in time from 1998 to 2023. The slopes of the linear regression models 204 

computed from the annual time series of average latitude for each province are computed (See supplementary 205 

material, Table S2). The poleward displacement of each province between 1998 and 2023 is displayed in Figure 3 206 

(in degree poleward).  207 
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 208 

Figure 3: Map of the provinces’ average latitude evolution in time from 1998 to 2023. Black lines display the definition 209 
of the 27 reference biophysical provinces (cf. Figure 1). Colors represent the trend in average latitude variation for each 210 
province (in degree poleward from 1998 to 2023): darker shades of red indicate poleward drifting, while darker shades 211 
of blue indicate equatorward drifting. Provinces of the equatorial biome colored in grey (101, 102 and 103) are not 212 
considered in this diagnostic because of their equatorial position. 213 

Most of the provinces experience poleward drifting (provinces colored with shades of red in Figure 3). The tropical 214 

provinces displaying increasing surface trends (See provinces 201, 203, Figure 2) experience equatorward drifting, 215 

as indicated by provinces colored with shades of blue in Figure 3. Provinces with average latitude evolution trends 216 

between +0.5 and -0.5 degree poleward over the time period are considered as stable in time, in terms of latitude 217 

(provinces colored in yellow in Figure 3). 218 

  219 

3.4 Uncertainties 220 

The robustness of the biophysical clustering obtained with the reference dataset, i.e., GLORYS12V1 for the 221 

physical variables and VGMP for the biological variable (see section 2.1., and table 1, product ref01), is tested by 222 

computing other biophysical clusterings derived from alternative environmental datasets. These alternative 223 

datasets include physical data from ARMOR3D (Guinehut et al., 2012; Mulet et al., 2012) and biological data 224 

from the biogeochemical model PISCES (Aumont et al., 2015),  225 

The Multi Observation Global Ocean 3D Temperature Salinity Height Geostrophic Current and MLD product of 226 

Copernicus Marine Service (MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012, product ref03, table 1) 227 

provides 3-D temperature from ARMOR3D dataset, derived from an optimal analysis of 3-D observations. This 228 

product is used to compute the epipelagic layer temperature and the stratification, instead of GLORYS12V1 (used 229 

in reference biophysical clustering, product ref01, table 1). A first alternative clustering, employing the same 230 

methodology as the reference biophysical clustering (see II.1. Variables and biophysical clustering), is performed 231 

using this product to compute the physical variables (the epipelagic layer temperature and the stratification), and 232 

still using VGPM (product ref01, table 1) to compute the NPP. 233 

Then, the Biogeochemical hindcast for global ocean product of Copernicus Marine Service  234 

(GLOBAL_MULTIYEAR_BGC_001_029, product ref02, table 1), is used to compute the NPP variable for the 235 

clustering instead of VGPM (product ref01, table 1). It provides 3D biogeochemical fields using PISCES 236 

biogeochemical model outputs. A second alternative clustering, employing the same methodology as the reference 237 

biophysical clustering, is performed using this product to compute the NPP, and still using GLORYS12V1 238 

(product ref01, table 1) to compute the physical variables (as in the reference biophysical clustering). 239 

The two alternative products mentioned above are available at ¼ degree from 1998 to 2022 at a monthly resolution. 240 

Each of them is used to compute an alternative clustering (respectively using VGPM-ARMOR3D and PISCES-241 

GLORYS12V1). We compare our reference biophysical clustering (VGPM-GLORYS12V1, see Section 2.1), 242 
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downscaled from 1/12-degree to 1/4-degree resolution, with two alternative clusterings (Figure 4), all averaged 243 

over the period 1998–2022. 244 

 245 

Figure 4: Clustering sensitivity analysis. Map of reference biophysical biomes computed from GLORYS12V1 (product 246 
ref01, table 1) and VGPM (product ref01, table 1), in black lines (cf. Figure 1).  The white areas indicate where both 247 
alternative clusterings assign the same cluster as the reference biophysical clustering. The blue areas indicate where the 248 
clustering using ARMOR3D (product ref03, table 1) instead of GLORYS12V1 (product ref01, table 1) assign a different 249 
cluster from the reference biophysical clustering. The yellow areas indicate where the clustering using PISCES (product 250 
ref02, table 1) instead of VGPM (product ref01, table 1) assign a different cluster from the reference biophysical 251 
clustering. The green areas indicate where both alternative clusterings assign a different cluster from the reference 252 
biophysical clustering. 253 

Figure 4 shows that the clustering is very stable when changing the physical variable source from GLORYS12V1 254 

(product ref01, table 1) to ARMOR3D (product ref03, table 1), as blue areas highlight minor boundaries 255 

differences. However, when changing biogeochemical variable source from VGPM (product ref01, table 1) to 256 

PISCES (product ref02, table 1), the productive biome 4 is highly impacted. However, NPP estimations from 257 

PISCES (product ref02, table 1) and VGPM (product ref01, table 1) differ significatively. We notice that the 258 

clustering remains relatively stable with respect to the source of forcings, although variations can arise when 259 

forcing fields differ widely. The time series and results presented in the study are thus valid using VGPM and 260 

GLORYS12V1 (both product ref01, table 1), but caution should be taken in extrapolating those results to clusters 261 

issued from other biogeochemical sources (e.g. models’ outputs). 262 

  263 

4 Discussion and conclusion 264 

In this study, we defined an annual time series of biophysical provinces linked to micronekton from 1998 to 2023, 265 

based on a methodology introduced in Albernhe et al. (2024, under review).  In addition to the provinces’ definition 266 

methodology, this previous article demonstrates that each province features a specific characterization in terms of 267 

micronekton biomass and vertical structure. Following the hypothesis that these characteristics are preserved over 268 

time, which needs to be further investigated, the evolution of provinces’ surface area can account for global 269 

micronekton trends and estimations. For instance, the shrinking of provinces featuring the highest density of 270 

micronekton biomass would lead to a global decrease of micronekton biomass.  271 

In the present study, we observe a global shrinking of productive provinces and polar provinces, in favor of 272 

equatorial and tropical provinces expansion (Figure 2). Productive provinces and subpolar provinces are 273 

characterized by high densities of micronekton biomass (Albernhe et al., 2024, under review), whereas equatorial 274 

and tropical ones display weaker densities. If provinces characteristics are preserved over time, these surfaces 275 

variations imply a global decline of micronekton biomass. This potential trend for micronekton biomass evolution 276 

https://doi.org/10.5194/sp-2024-35

Discussions

Preprint. Discussion started: 1 October 2024
c© Author(s) 2024. CC BY 4.0 License.



   

 

8 
 

on the historical period would be in range with studies on micronekton biomass climate projections (Bryndum-277 

Buchholz et al., 2018; Kwiatkowski et al, 2018; Lotze et al, 2019; Tittensor et al., 2021; Ariza et al., 2022). 278 

The tracking of the geographical evolution of the provinces in time reveals that most of the provinces experience 279 

poleward drifting (Figure 3). This poleward drifting is a valuable observation in range with the literature (Hastings 280 

et al., 2020; Pinsky et al., 2020), suggesting a potential poleward migration of micronektonic populations induced 281 

by temperature changes. 282 

  283 
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Data availability 316 

All data products used in this paper are listed in Table 1, along with their corresponding documentation and online 317 

availability. 318 

Table 1: Product Table 319 

Product 
ref. No. 

Product ID & type Data access Documentation 

01 GLOBAL_MULTIYEAR_BGC_001_033; Numerical 
Models 

EU Copernicus Marine 
Service Product: Global 
Ocean low and mid trophic 
levels biomass content 
hindcast, Mercator Ocean 
International, 
https://doi.org/10.48670/moi-
00020 
 

Quality 
Information 
Document 
(QUID):  
Titaud et al., 
2023 
 
Product User 
Manual 
(PUM): Titaud 
et al., 2023 
 

02 GLOBAL_MULTIYEAR_BGC_001_029; Numerical 
models 

EU Copernicus Marine 
Service Product: 
Biogeochemical hindcast for 
global ocean, Mercator 
Ocean International, 
https://doi.org/10.48670/moi-
00019  
 

Quality 
Information 
Document 
(QUID):  
Perruche et al., 
2019 
 
Product User 
Manual 
(PUM) : Le 
Galloudec et 
al., 2022 

03 MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012; 
In-situ observations, Satellite observations 

EU Copernicus Marine 
Service Product: Multi 
Observation Global Ocean 
3D Temperature Salinity 
Height Geostrophic Current 
and MLD, CLS, 
https://doi.org/10.48670/moi-
00052 
 

Quality 
Information 
Document 
(QUID):  
Greiner., 2023 

 
Product User 
Manual 
(PUM) : 
Verbrugge et 
al., 2023 
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